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Can we find one theorem to rule them all?

S.M. Prokudin-Gorsky: Alim Khan, emir of Bukhara, 1911



Why parameter words are not good for K4-free graphs?
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Coding tree (Dobrinen, Zucker)
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Why Laver’s argument is not good for hypergraphs?

H3

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!
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Why Laver’s argument is not good for hypergraphs?
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v2
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v0

v1

v2

Colour of a subgraph = shape of meet closure in both trees
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!



“Unrestricted” structures

Theorem (Balko, Chodounsky, Jan Hubika, Konečný, Vena, 2022)

Big Ramsey degrees of the universal 3-uniform hypergraph are finite.

Theorem (Braunfeld, Chodounsky, de Rancourt, Jan Hubika, Kawach, Konečný, 2022+)

Big Ramsey degrees of the universal hypergraph are finite.

Theorem (Braunfeld, Chodounsky, de Rancourt, Jan Hubika, Kawach, Konečný, 2022+)

Let L be a relational language. Let M be a Fraïssé limit of a free amalgamation class
defined by a set of forbidden structures F . Assume that:

1 for every F ∈ F there exists R ∈ L and x⃗ ∈ RF containing all vertices of F, and
2 M is ω-categorical.

Then M has finite big Ramsey degrees.

1 All results makes use of the product (or vector) form of the Milliken tree theorem.
2 Lower bounds are currently work in progress.
3 We know that the
4 The results can be extended by interposing linear orders and unary functions.



All enumerations tree

Basic idea: produce an amalgamation of all tree of types of enumerations of K4-free
graphs and make type remember the initial segment of enumeration it belongs to.

1 Type is an K4-free graph on vertex set {0, 1, . . . , n − 1, t}. t is a type vertex denoted
by cross.

2 Order is inclusion.
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1 Every enumeration is a subtree.

2 K4-free graph can be defined naturally on top of this tree.
3 Can we find a good Ramsey theorem for trees like this?
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S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:

S1 If S(a, p̄, c) is defined for some a ∈ T , p̄ ∈ T<ω and c ∈ Σ, then S(a, p̄, c) is an
immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.

S2 Injectivity: If S(a, p̄, c) = S(b, q̄, d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0, 1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (), 0), (), 1), (), 0), (), 1), (), 1).
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Level-decomposition

Definition (S-term)

Given an S-tree (T ,⪯,Σ,S), we call a term α an S-term if and only if α ∈ T , or
α = (β, (γ0, γ1, . . . , γn−1), c) where n ∈ ω, all of β, γ0, γ1 . . . γn−1 are S-terms and c ∈ Σ.

Definition (Level decomposition)

Let (T ,⪯,Σ,S) be an S-tree. Given a ∈ T and n < ω, the level n decomposition of a,
denoted by Dn(a), is an S-term defined recursively:

1 If ℓ(a) ≤ n, then
Dn(a) = a.

2 For a = S(b, (p0, . . . , pn−1), c) such that ℓ(a) > n, we let

Dn(a) = (Dn(b), (Dn(p0),Dn(p1), . . . ,Dn(pn−1)), c).

Example

D1(001) = ((0, (), 0), (), 1).
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Manipulating nodes

We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level removal)

Given a ∈ T and n < ℓ(a), we let Rn(a) be a node b ∈ T satisfying Dn(b) = rn(Dn+1(a))
where rn is a function rn : T (n + 1) → T defined by rn(d) = d |n. If there is no such node b,
we say that Rn(a) is undefined.

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.
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Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T , n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω, g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).
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Ramsey theorem for shape-preserving functions

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T , n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω, g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).

Proof outline (5 pages)
1 Use Hales-Jewett theorem to prove 1-dimensional pigeonhole
2 Use combinatorial forcing to prove ω-dimensional pigeonhole
3 Use fusion like in proof of Milliken’s theorem to prove the theorem



Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.
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Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)
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Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)
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Remarks

1 The proof generalizes naturally to strong amalgamation classes including partial
orders, special metric spaces.
(general theorem in work in progress.)

2 Optimal upper bounds on big Ramsey degrees can be achieved.
3 For languages with relations of higher arity the S-tree can be defined analogously

using n-types instead of 1-types. Surprising complication occurs when forbidding
some substructures: the case of free amalgamation classes in finite languages is still
open.



Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?
4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher

arity).
In particular we do not know how to forbid the following:



Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?
4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher

arity).
In particular we do not know how to forbid the following:



Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?

4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher
arity).
In particular we do not know how to forbid the following:



Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?
4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher

arity).
In particular we do not know how to forbid the following:



In a Land of Fantastic Cacti, Fred Payne Clatworthy, Autochrome, 7 x 5", c1929
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Optimality

Known characterisations of big Ramsey degrees:
1 1979 Devlin: the order of rationals
2 2008 laflamme, Nguyen Van Th,́ Sauer: Ultrametric spaces
3 2010 Laflamme, Sauer, Vuskanovic: the Rado graph
4 2010 Balko, Chodounský, Hubička, Konečný, Vena, Zucker; independenty Dobrinen:

Triangle free graphs
5 2021+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: universal

partial order
6 2022+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: Free

amalgamation classes in finite binary languages with finitely many forbidden
substructures (96 pages draft)

So far the main application of such result is the completion flow introduced in:
A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.

We expect that understanding these types will help to develop structural Ellentuck-type
theorems as well as help in understanding other aspects of homogeneous structures
(such as the Cherlin-Lachlan classification programme).
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4 2010 Balko, Chodounský, Hubička, Konečný, Vena, Zucker; independenty Dobrinen:

Triangle free graphs
5 2021+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: universal
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amalgamation classes in finite binary languages with finitely many forbidden
substructures (96 pages draft)

So far the main application of such result is the completion flow introduced in:
A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.

We expect that understanding these types will help to develop structural Ellentuck-type
theorems as well as help in understanding other aspects of homogeneous structures
(such as the Cherlin-Lachlan classification programme).



Devlin-type

Given n, the big Ramsey degree of linear order of size n is to the number of Devlin-types.

Notation:
• Σ<ω is the set of all finite words in alphabet Σ.
• Given S ⊆ Σ<ω by S we denote the set of all initial segments of words in S.
• By Si we denote the set of all initial segments of S of length i .
• By w⌢c we denote word w extended by character c (concatenation).
• S⌢c = {w⌢c : w ∈ S}.

Definition (Devlin-type, alternative definition)

A Devlin-type is any subset S of 2<ω that is an antichain and for
every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.
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Type of a Rado graph

Definition (Devlin-type)

A Devlin-type is any subset S of 2<ω that is an antichain and for
every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.
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110
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Definition (Rado graph-type, Laflamme–Sauer–Vuksanovic)

A Rado graph-type is any subset S of 2<ω that is an antichain and
for every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 has precisely one
successor of each of Sℓ \ {w}.

2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)
⌢0.

00

110

1010



Canonizing embeddings

Definition (Recall: graph G)

We will consider graph G:
1 Vertices: 2<ω

2 Vertices a, b ∈ 2<ω satisfying |a| < |b| forms and edge if and only if b(|a|) = 1.
3 There are no other edges.

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.
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Proof

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.

3 Now assume that Si and Ni are already constructed. Put:
Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.

4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels
are precisely first i − 1 levels of Si .

5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all
leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.
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What are the types

Vertex (t0 → x0),Branch (t0 → t1, t2),
Vertex (t2 → x1),Branch (t2 → t3, t4),
Vertex (t1 → x2),Branch (t1 → t5, t6),
Vertex (t3 → x3),Branch (t3 → t7, t8),
Vertex (t4 → x4),Branch (t4 → t9, t10),
Vertex (t5 → x5),Branch (t5 → t11, t12),
Vertex (t7 → x6),Branch (t7 → t13, t14),
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Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.
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Definition (Poset-type)

A set S ⊆ {L,X,R}∗ is called a poset-type if precisely one of the following four conditions is satisfied
for every level ℓ with 0 ≤ ℓ < maxw∈S |w |:

1 Leaf: There is w ∈ Sℓ related to every u ∈ Sℓ \ {w} and Sℓ+1 = (Sℓ \ {w})⌢X.

2 Branching: There is w ∈ Sℓ such that

Sℓ+1 = {z ∈ Sℓ : z <lex w}⌢X ∪ {w⌢X,w⌢R} ∪ {z ∈ Sℓ : w <lex z}⌢R.

3 New ⊥: There are unrelated words v <lex w ∈ Sℓ such that

Sℓ+1 = {z ∈ Sℓ : z <lex v}⌢X ∪ {v⌢R} ∪ {z ∈ Sℓ : v <lex z <lex w and z ⊥ v}⌢X

∪ {z ∈ Sℓ : v <lex z <lex w and z ̸⊥ v}⌢R ∪ {w⌢X} ∪ {z ∈ Sℓ : w <lex z}⌢R.

Moreover for every u ∈ Sℓ, v <lex u <lex w implies that at least one of u ⊥ v or u ⊥ w holds.

4 New ≺: There are unrelated words v <lex w ∈ Sℓ such that

Sℓ+1 = {z ∈ Sℓ : z <lex v and z ⊥ v}⌢X ∪ {z ∈ Sℓ : z <lex v and z ̸⊥ v}⌢L ∪ {v⌢L}

∪ {z ∈ Sℓ : v <lex z <lex w}⌢X ∪ {w⌢R} ∪ {z ∈ Sℓ : w <lex z and w ⊥ z}⌢X

∪ {z ∈ Sℓ : w <lex z and w ̸⊥ z}⌢R.

Moreover for every u ∈ Sℓ such that u <lex v , at least one of u ⪯ w or u ⊥ v holds.
Symmetrically for every u ∈ Sℓ such that w <lex u, at least one of v ⪯ u or w ⊥ u holds.



Definition (Devlin-type)

A Devlin-type is any subset S of {0, 1}∗ such that for every
ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.
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Main result

Given a finite partial order (A,≤), we let T (A,≤) be the set of all poset-types S such that
(S,⪯) is isomorphic to (A,≤).

Theorem (M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, L. Vena, A. Zucker)

For every finite partial order (O,≤), the big Ramsey degree of (O,≤) in the universal
partial order (P,≤) equals |T (O,≤)| · |Aut(O,≤)|.

Example

Denote by An the anti-chain with with n vertices and by Cn the chain with n vertices.

T (A1) = T (C1) = {∅} T (A2) = {{XR,RXX}, {XRX,RX}}
T (C2) = {{XL,RRX}, {XLX,RR}}

|T (C3)| = 52, |T (C4)| = 11000,

|T (A3)| = 84, |T (A4)| = 75642
Overall there are:
• 1 poset-types a vertex,
• 4 poset-types of posets of size 2,

• 464 poset-types of posets of size 3,
• 1874880 poset-types of posets of size 4.
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Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.
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Definition (Trianglefree-type)

A set S ⊆ Σ∗ is called a triangle-free-type if S = S and precisely one of the following four
conditions is satisfied for every i with 0 ≤ i < maxw∈S |w |:

1 Leaf: There is w ∈ Si containing at least one 1 such that

Si+1 = {z ∈ Si \ {w} : z ⊥ w}⌢0 ∪ {z ∈ Si \ {w} : z ̸⊥ w}⌢1.

2 Branching: There is w ∈ Si such that

Si+1 = S⌢
i 0 ∪ {w}⌢1.

3 First neighbour: There is w ∈ Si containing no 1 such that

Si+1 = (Si \ {w})⌢0 ∪ {w}⌢1.

4 New ⊥: There are distinct words v ,w ∈ Si each containing at least one 1 satisfying
v ̸⊥ w such that

Si+1 = (Si \ {v ,w})⌢0 ∪ {v ,w}⌢1.



Thank you!
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